Lecture/Theory Statistics
4. Distribution of Functions of Random Variables
iamzieun
2024. 6. 27. 19:02
- 우리는 왜 functions of random variables의 분포를 알고싶어할까?
- 우리는 모집단의 특성을 설명해줄 ‘모수’를 추론하기 위해, 표본으로부터 모수를 추정하고 그 추정량의 정확도를 검정한다. 추정량을 검정하기 위해 \(P(|\hat{\theta}-\theta| \leq c)\)를 구하기 위해서는 \(\hat{\theta}\) = statistic = \(T(X_1, X_2, \cdots, X_n)\)= functions of random variables 의 분포를 알아야 한다.
- Methods to obtain the distribution of functions of random variables
- distribution function technique
- continuous type random variables \(X_1, \cdots, X_n \sim\) pdf \(f(x_1, \cdots, x_n)\)→ What is pdf of \(Y=u(X_1, \cdots, X_n)\)?
- compute cdf of \(Y\): \(F(y)=P[u(X_1, \cdots, X_n) \le y]\)
- obtain pdf of \(Y\) by differentiate \(F(y)\): \(f(y) = \frac{d}{dy}f(y)\)
- continuous type random variables \(X_1, \cdots, X_n \sim\) pdf \(f(x_1, \cdots, x_n)\)→ What is pdf of \(Y=u(X_1, \cdots, X_n)\)?
- transformation technique
- discrete random variable: \(p_Y(y)=p_X(u^{-1}(y))\)
- continuous random variable: \(f_Y(y) = f_X(g^{-1}(y))|\frac{dx}{dy}|\)
- moment generating function technique
- \(\because\) mgf is unique and completely determines the distribution of the random variable
- asymptotic technique
- definition of limiting distribution
- mgf technique
- Central limit theorem + Slutsky’s theorem or Delta method
- Monte Carlo Method
- distribution function technique